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A. ORIGINAL OBJECTIVES:
1. Collaborate with with Prof. Bialynicki-Birula, who has developed a “twistorial 

Fourier transform” useful for generating EM and other conformal fields. We have 
recently discovered a close connection between this transform and EM wavelets and 
intend using this in several ways, including the construction of twisted EMW which 
are expected to have better collimation and stability characteristics than the present 
ones.

2. I have recently participated in a NATO Singular Optics workshop, where I become 
interested in polarization singularities and their applications to EM wavelets. I plan 
to study related issues of angular momentum, spin, helicity and vorticity. Some of 
this work may also be done jointly with Prof. Bialynicki-Birula as it is related to the 
twisted beams.

3. Work with Prof. Konstantin Lukin, a Noise Radar expert, I met at the above 
workshop, who is interested in testing experimentally various antenna designs for 
launching EMW using the sources I have computed.

4. I plan to participate in the Multi-scale Geometry and Analysis in High Dimensions 
(MGA) program at IPAM to prepare for constructing fast EM wavelet transforms 
based on the recently computed Fourier representation of EMW sources.

5. Design fast EM wavelet transforms using ideas and methods from MGA such as 
curvelets, possibly with some other participants from the MGA program.

OBJECTIVES FOR ADDITIONAL WORK EFFORT:
1. Finish the theoretical analysis of PBW antennas by constructing EM wavelets whose 
polarization conforms to the geometry defined by the propagation of the oblate 
spheroidal wave fronts. The current formulation is based on Whittaker potentials, 
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which have no relation to the spheroidal geometry. Finding conformal polarizations has 
practical consequences since it would greatly simplify the mathematical expressions for 
the sources, hence their implementation, and should also improve the efficiency of the
antennas.
2. Collaborate with Professors Anthony Devaney and Edwin Marengo (Northeastern 
University) to help Dr. Richard Albanese and his team at Brooks City Base construct 
realizations of PBW with optimal power, energy and efficiency for the purpose of high-
resolution remote sensing and imaging.

B.OBJECTIVE ADDED DURING GRANT PERIOD:
Find natural polarizations for EM wavelets that are consistent with the spheroidal 
geometry of the scalar pulsed-beam wavelets (PBW) used to derive the EM wavelets.

STATUS OF EFFORT
[A brief statement of progress towards achieving the research objectives.  Please make this substantive 
(Limit to 200 words).]

1. Prof. Bialinicki-Birula’s method turned out to be capable only of giving sourceless EM 
waves, which rules out its applicability to the production of EM wavelets. However, I 
developed an independent method for constructing EM wavelets with arbitrary 
angular momentum about the beam axis. See the attached papers Retarded multipole 
wavelets Parts I and II.

2. Prof. Lukin visited me in July 2005 and his efforts culminated in a report (attached), 
but Dr. Albanese and I concluded this had limited value. 

3. The collaboration with Profs. Devaney and Marengo resulted in a significant paper 
(attached), to appear in IEEE Transactions in Antennas & Propagation, which 
validates the realizability and usefulness of EM wavelets.

4. The method of Debye potentials (suggested by Prof. Devaney) yields EM wavelets 
whose polarizations are consistent with the spheroidal geometry of the scalar PBW. I 
believe all the elements are now in place for the realization and fabrication of EM 
wavelet sources.

ACCOMPLISHMENTS/NEW FINDINGS
[Describe research highlights, their significance to the field, their relationship to the original goals, their 
relevance to the AF's mission, and their potential applications to AF and civilian technology challenges.]

1. The singular pulsed-beam wavelet sources, supported on disks, have been replaced 
by equivalent shell sources supported on spheroidal surfaces or shells surrounding the 
disks. 



2. This method was recently found to yield a conserved transmission current which 
expresses the invariance of the transmission amplitude between wavelet sources with 
respect to deformation of the equivalent source.  
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 Institute of Radiophysics and Electronics
 Kharkov, Ukraine 
 Consulting on wavelet antenna fabrication
 Total of 100 hours at $40/hour
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A. Conferences:
1. Invited lecture, conference in honor of Carlos Berenstein, George Mason 

University, May 17-20, 2004.
2. Plenary lecture, 7th International Conference on Clifford Algebras, Toulouse, France, 
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1. Making electromagnetic wavelets. Physics department colloquium, University of Texas, 
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[Consultative and advisory functions to other laboratories and agencies, especially Air Force and other 
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and name(s) of principal individuals involved.]

Beginning in October 2007, I have been giving 3-hour monthly lectures on EM wavelets 
and the underlying mathematics at Brooks City Base in San Antonio, TX. The audience 
has consisted of Drs. Albanese, Grant Erdmann, Sherwood Samn (all at Brooks), Prof. 
Walter Richardson (UTSA) and several others.
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Abstract
Electromagnetic wavelets are constructed using scalar wavelets as
superpotentials, together with an appropriate polarization. It is shown that
oblate spheroidal antennas, which are ideal for their production and reception,
can be made by deforming and merging two branch cuts. This determines a
unique field on the interior of the spheroid which gives the boundary conditions
for the surface charge-current density necessary to radiate the wavelets. These
sources are computed, including the impulse response of the antenna.

PACS numbers: 02.30.Jr, 02.30.Uu, 41.20.Jb, 41.85.Ct

1. Complex distance and its branch cuts

Electromagnetic wavelets were introduced in [K94] as localized solutions of Maxwell’s
equations. They are ‘wavelets’ in the historical sense of Huygens as well as the modern
one: being generated from a single ‘mother wavelet’ by conformal transformations including
translations and scaling, they form frames that provide analysis-synthesis schemes for general
electromagnetic waves. Together with their scalar (acoustic) counterparts, they have been
called physical wavelets. It was pointed out that they can, in principle, be emitted and absorbed
causally, and applications to radar and communications have been proposed [K96, K97, K1]
based on their remarkable ability to focus sharply and without sidelobes. Similar objects,
long studied in the engineering literature under the name complex-source pulsed beams, have
been used to build beam summation methods and analyse the behaviour of solutions (see
[HF1] for a recent review). However, to implement the proposed applications to radar and
communications, the wavelets must be realized by simulating their sources. This has proved
to be difficult, and detailed investigations have only been made recently [HLK0, K3]. Here I
present a new and rather complete analysis of the sources based on an insight which I believe
is a key to their realization: the sources can be constructed from the very branch cuts that give
the wavelets their remarkable properties.

0305-4470/04/225929+19$30.00 © 2004 IOP Publishing Ltd Printed in the UK 5929
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Physical wavelets are based on the idea of displacing a point source to complex
coordinates. Since a real translation gives nothing new, it suffices to discuss a point source
with purely imaginary coordinates ia. It will be seen that this results in a real, coherent,
extended source distribution parametrized by the single vector a, much as an antenna dish can
be described by a single vector giving the orientation and radius of the dish.

Recall the definition of the complex distance σ from the imaginary source point ia to the
real field point r,

σ(r − ia) =
√

(r − ia) · (r − ia) =
√

r2 − a2 − 2ia · r. (1)

For each fixed source location ia �= 0, its branch points form a circle:

σ = 0 ⇒ r ∈ C = {r ∈ R
3 : r = a,a · r = 0}.

It is important to note the topological difference between a �= 0, when R
3 − C is multiply

connected, and a = 0, when C contracts to the origin and R
3 − C becomes simply connected.

Writing

σ = p − iq (2)

note that (1) implies

r2 − a2 = p2 − q2 a · r = pq

from which one easily obtains the relations to the cylindrical coordinates with z-axis parallel
to a:

az = pq aρ = a
√

r2 − z2 =
√

p2 + a2
√

a2 − q2. (3)

This gives an important bound on the ‘complexness’ of σ in terms of the ‘complexness’ of its
argument:

|q| � a or |Im σ(z)| � |Im z| z = r − ia.

It follows from (3) that

ρ2

a2 + p2
+

z2

p2
= ρ2

a2 − q2
− z2

q2
= 1

hence the level surfaces of p2 form a family of oblate spheroids

Sp = {r : p2 = const > 0} =
{
r :

ρ2

a2 + p2
+

z2

p2
= 1

}
(4)

and those of q2 form the orthogonal family of one-sheeted hyperboloids

Hq ≡ {r : 0 < q2 = const < a2} =
{
r :

ρ2

a2 − q2
− z2

q2
= 1

}
. (5)

To complete the picture, we include the following degenerate members of these families,

S0 = {r : 0 � ρ � a, z = 0} (6)

H0 = {r : a � ρ < ∞, z = 0}
Ha = {r : ρ = 0,−∞ < z < ∞} (7)

where S0 and H0 each form a twofold cover of the indicated sets.
The families Sp and Hq are depicted in figure 1, along with the azimuthal half-plane

φ = constant. They are confocal, with the branch circle C as their common focal set. Note
that the intersection of Sp with Hq consists of two circles whose further intersection with the
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Figure 1. The level surfaces of σ form an oblate spheroidal coordinate system.

azimuthal half-plane consist of two points for each choice of (p2, q2, φ). When p = q = 0,
the two circles merge with the branch circle C. The set of numbers

(σ, φ) ≡ (p, q, φ) −∞ < p < ∞ −a � q � a 0 � φ < 2π

therefore gives a twofold cover of R
3 − C. To obtain a coordinate system, we must choose

between the two covers, and this amounts to choosing a branch cut that makes σ single valued,
as explained below. This will result in a one-to-one correspondence between (σ, φ) and points
r ∈ R

3 not on the branch cut, giving an oblate spheroidal coordinate system.
If we continue σ analytically around a closed loop threading the branch circle C, it returns

with its sign reversed. To make it single valued, it is therefore necessary to choose a branch
cut that prevents the completion of the loop. Note from (1) that

r � a ⇒ σ ≈ ±(r − ia cos θ). (8)

The spatial region with r � a will be called the far zone (we need a > 0 here to set the scale).
Since we want σ to generalize the usual positive distance r, we insist that

r � a ⇒ p ≈ r q ≈ a cos θ. (9)

If follows from (9) that the branch cut B is bounded since it must be entirely contained inside
any spheroid Sp with p2 sufficiently large, and its boundary must be the branch circle:

∂B = C. (10)

(The alternative is a branch cut extending from C to infinity, but this violates (9).) B is therefore
a membrane spanning C, and any such membrane will do. The situation is best understood
topologically. The analytic continuation of the distance has opened up a window connecting
the two branches of r = √

r · r, thus making R
3 − C multiply connected. The spherical

coordinates r and θ merge analytically into σ , which is double valued, and the choice of a
branch cut B makes R

3 − B simply connected and σ single valued.
Let σ0 denote the complex distance with the flat disc S0 as branch cut:

σ0 = p0 − iq0 p0 � 0 −a � q0 � a. (11)

The complex distance σB with B as branch cut is now defined as follows. Choose an arbitrary
reference point r0 in the far zone, where σB = σ0. To find σB at any other point r, continue
analytically along an arbitrary path from r0 to r, with the following rule: whenever the path
crosses B, σB changes sign. This gives a unique definition of σB, and both pB and qB have a
jump discontinuity across the interior of B. Of course, σB = σ0 = 0 on C.
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Figure 2. The cut function χ(q) = Xε(q) with ε = 0.005 and its branch cut with a = 1. The two
sheets have been purposely separated to show the double cover.

A general branch cut can be specified by a function χ(p, φ) as

B = {r ∈ R
3 : p = χ(q, φ),−a � q � a, 0 � φ � 2π}, (12)

where the cut function χ must satisfy

χ(−q, φ) = −χ(q, φ) χ(q, 2π) = χ(q, 0). (13)

The first condition ensures that σ changes sign across B, while the second ensures that it
is continuous across the half-plane φ = 0 on each side of B. Note that B need not be
cylindrically symmetric. We will be especially interested in the cuts Bα defined by the
cylindrical cut functions

χα(q) = α Sgn(q). (14)

Note that on Bα we have

az = pq = αq Sgn(q) = α|q|.
If α > 0, then the values q �= 0 generate the upper spheroid

S+
α = {r ∈ Sα : z > 0}.

But this does not include the branch circle C, so the bounding condition (10) is not satisfied.
The problem is that Sgn(q) is undefined at q = 0, and the set of all points with q = 0 is
the degenerate hyperboloid H0 (7). Hence we define the part of Bα with q = 0 as the apron
bridging the gap between C and S+

α ,

B0
α = {r : a � ρ �

√
a2 + α2, z = 0}.

Thus, for α > 0, χα(q) defines the upper spheroidal branch cut

Bα = S+
α ∪ B0

α ∂Bα = C. (15)

Similarly, χ−α(q) defines the lower spheroidal cut

B−α = S−
α ∪ B0

α ∂B−α = C. (16)

As α → 0, both cuts contract to the doubly covered flat disc spanning C, which is the
degenerate spheroid S0 (6).

Every branch cut B is doubly covered. Consider any simply connected, closed surface S
containing C in its interior. Think of S as a balloon and of C as a rigid wire ring. Now deflate
the balloon, and you have a branch cut bounded by C. In particular, if we take S = Sα and
keep the upper spheroid rigid while deflating, the balloon stretches around the ring to cover
the underside of S+

α and we obtain the cut (15) (see figure 2).
The image of a branch cut as a balloon enclosing the singular ring is similar to Penrose’s

idea of cosmic censorship in general relativity [W99, chapter 5] where a horizon (S) prevents
the outside observer from seeing a naked singularity (C). In light of the connection with
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Newman’s analytic Coulomb field (see the discussion below (54)), the two may in fact be
closely related.

The discontinuity of χα in (14) causes two problems: the q = 0 contribution is undefined
(hence the aprons B0

α had to be chosen ‘by hand’), and the resulting cut had a sharp edge. For
computational purposes, it may be better to use smooth cut functions to avoid both problems.
Let ε > 0 and define

Xε(q) = 1

π
Im ln

(
ε + iq

ε − iq

)
χ(q) = αXε(q). (17)

For ε � a,Xε(q) is a smoothed version of Sgn(q) and the resulting branch cut closely
approximates Bα without the need to define the apron separately. This is shown in
figure 2.

2. Scalar wavelets

For any fixed choice of branch cut B, we now denote the complex distance simply by σ . Scalar
wavelets are then defined as the retarded solutions


(z, τ ) = g(τ − σ)

σ
≡ gr

σ
z = r − ia τ = t − ib (18)

where we have set the propagation speed c = 1 (otherwise gr = g(τ − σ/c)) and g is the
analytic-signal transform of a driving signal g0(t), defined1 as the convolution of g0 with the
Cauchy kernel:

g(τ) = 1

2iπ

∫ ∞

−∞

g0(t
′) dt ′

τ − t ′
τ = t − ib

= b

2π

∫ ∞

−∞

g0(t
′) dt ′

(t ′ − t)2 + b2
+

i

2π

∫ ∞

−∞

(t ′ − t)g0(t
′) dt ′

(t ′ − t)2 + b2

= g1(t, b) + ig2(t, b). (19)

g1(t, b) and g2(t, b) are smoothed versions of 1
2g0(t) and its Hilbert transform, with b as the

smoothing parameter. We assume that g0(t) decays at infinity, from which it follows that g(τ)

is analytic in the upper and lower complex time half-planes C
±. The original driving signal

can be recovered as the boundary value

g0(t) = lim
b→+0

[g(t − ib) − g(t + ib)] .

(The limit of the sum gives the Hilbert transform.) In particular, if g0 vanishes on any open
interval I, this interval becomes a window between the upper and lower half-planes through
which the functions g(t ± ib) can be connected so that they are both part of a single analytic
function. (This is a special case of the edge of the wedge theorem in higher dimensions; see
[K3].) Since every practical driving signal vanishes at least in the remote past, this property
will be assumed. Note that this excludes time-harmonic driving signals, which are however
idealizations.

Now consider the numerator of (18),

g(τ − σ) = g(t − p − i(b − q)).

Suppose that |b| � a. Then g(τ − σ) is undefined along the semi-hyperboloid where
q(r) = b, except when t − p(r) is in the zero-set of g0. On the other hand, if |b| > a, then
b − q(r) vanishes nowhere and g(τ − σ) is analytic at all (r, t). Therefore we assume from
now on that

|b| > a (20)

1 This is a special case of a multidimensional definition; see [K3].
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so that g(τ − σ) is defined unambiguously everywhere. The imaginary source coordinates
must therefore belong either to the future cone or to the past cone of spacetime,

b > a ⇒ (a, b) ∈ V+ b < −a ⇒ (a, b) ∈ V−

which means that the complex 4-vector from the source point iy = i(a, b) to the field point
x = (r, t) belongs either to the forward tube or the backward tube of complex spacetime
[SW64, K3],

T± = {z = x − iy ∈ C
4 : y ∈ V±} x = (r, t) y = (a, b). (21)

The source distribution of 
 is now defined as a generalized function by applying the wave
operator,

S(z) = (
∂2
t − ∇2

)

(z) = �x
(z), (22)

where �x indicates that the operator acts only on the real spacetime variables x of the field
point. It is well known that

� h(t − r)

r
= 4πh(t)δ(r) (23)

for any differentiable function h, and this can be extended to 
(z). Since 
 is differentiable
in r everywhere outside of the branch cut B, (23) suggests that S is a (Schwartz) distribution
supported on B, a conclusion borne out by a rigorous analysis [K3]. The discontinuity of 


across B gives a combination of simple and double layer terms of S on B [K3].
The frequency content of g(τ) determines that of 
 and should therefore be understood.

Substituting the Fourier representation of g0 into the definition (19) and reversing the order of
integration give

g(τ) = 1

2iπ

∫ ∞

−∞

dt ′

τ − t ′

∫ ∞

−∞

dω

2π
ĝ0(ω) e−iωt ′

=
∫ ∞

−∞

dω

2π
ĝ0(ω)

1

2iπ

∫ ∞

−∞

e−iωt ′ dt ′

τ − t ′
. (24)

The contour in the second integral can be closed in the lower half-plane if b > 0 and in the
upper half-plane if b < 0, giving

g(τ) = Sgn(b)

∫ ∞

−∞

dω

2π
ĝ0(ω)�(ωb) e−iωτ τ = t − ib (25)

where �(ωb) is the Heaviside step function. Thus if b > 0, g contains only the positive-
frequency components of g0, and if b < 0, it contains only the negative-frequency components.
In either case, the factor e−ωb in the extended Fourier kernel

e−iωτ = e−ωbe−iωt

acts as a low-pass filter, substantially damping frequencies |ω| � b−1 and thus smoothing out
g(τ). If the driving signal g0 is assumed real, then ĝ0(±ω) are related by complex conjugation
and therefore so are g(t ∓ ib). If g0 is complex, then ĝ0(±ω) are unrelated and so are
g(t ∓ ib).

Example. Let g(τ) be the (n − 1)st derivative of the Cauchy kernel2,

g(τ) = Cn(τ) = (i∂t )
n−1 1

2iπτ
= (n − 1)!

2π inτ n
(26)

2 The driving signal is the singular distribution g0(t) = (i∂t )
n−1δ(t), but this can be approximated.
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whose Fourier transform is

Ĉn(ω, b) =
∫ ∞

−∞
dt eiωtCn(t − ib) = Sgn(b)�(ωb)ωn−1 e−ωb. (27)

Thus, while b acts to suppress high frequencies, n > 1 acts to suppress low frequencies and
we end up with a band-pass filter whose effective centre frequency and bandwidth are given
by a Poisson distribution,

ωn = n

b
�ω =

√
n

|b| . (28)

The behaviour of 
 in the far zone is governed by that of g(τ − s). By (9),

Cn(τ − σ) = (n − 1)!

2π in(τ − σ)n
≈ (n − 1)!

2π [(b − a cos θ) + i(t − r)]n

is a pulse with angle-dependent duration

T (θ) = |b − a cos θ | � |b| − a = Tmin > 0 (29)

being shortest at θ = 0 if b > a and at θ = π if b < −a. While the pulse duration is
independent of n, the strength of the peak depends jointly on the size of n and the smallness
of b − a:

M(θ) = |g(τ − σ)|t=r ≈ (n − 1)!

2πT (θ)n
. (30)

To get a measure of the diffraction angle, assume b > a for definiteness. Fix β > 0 and look
for the angle θβ at which

M(θβ) = e−βM(0).

Then

(b − a cos θβ)n = eβ(b − a)n

which gives

2 sin2(θβ/2) = 1 − cos θβ = (eβ/n − 1)
b − a

a
. (31)

Thus, θβ can be made small either by choosing b − a � a, or n � β. In either case, the
right-hand side gives θ2

β

/
2. A reasonable measure is obtained with β = 1.

3. From scalar to vector wavelets

It is well known that every electromagnetic field can be derived from a pair of real
scalar potentials, the most well-known examples of which are the Whittaker and Debye
superpotentials [N55]. In this section we use the scalar wavelet 
 as a complex Whittaker
superpotential. Although this is equivalent to using a pair of real potentials, disentangling
the real and imaginary parts leads to unnecessarily complicated expressions, something like
taking the real and imaginary parts of a complicated analytic function f (x + iy) in order to
obtain two real harmonic functions. To see how bad it gets, note from (49) that the fields and
currents contain terms of the type σ k−3g(k)(τ −σ) with k = 0, 1, 2. In the simplest case k = 2
(which will give the radiation terms of the field), (19) gives

g̈(τ − σ)

σ
= g1(t − b, b − q) + ig2(t − b, b − q)

p − iq

Re

{
g̈(τ − σ)

σ

}
= pg̈1(t − b, b − q) − qg̈2(t − b, b − q)

p2 + q2

Im

{
g̈(τ − σ)

σ

}
= pg̈2(t − b, b − q) + qg̈1(t − b, b − q)

p2 + q2

(32)
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and it is clear that the real expressions quickly become unmanageable. Thus, although we
work with complex potentials and fields, we view this as a very compact and efficient way
of computing the real fields. In particular, our expressions contain nothing extraneous since
their imaginary as well as real parts have a direct physical significance. This strategy is based
on the analyticity of 
 outside the source region, which will indeed make harmonic pairs out
the fields D and B, as seen below.

With 
 as a complex Whittaker superpotential, we define the retarded complex Hertz
potential

Z = 
π (33)

where π is a fixed complex polarization vector that can be seen [K3] to be a combination of
(real) electric and magnetic dipole moments. The real and imaginary parts of Z

Z = Ze + iZm

are interpreted as electric and magnetic Hertz vectors [BW99, p 84, 85]. They generate a
4-vector potential Aµ (µ = 0, 1, 2, 3) by

A0 = −∇ · Ze A = ∂tZe + ∇ × Zm (34)

which automatically satisfies the Lorenz condition

∂tA0 + ∇ · A = 0. (35)

In turn, it follows from potential theory (or the Poincarè lemma for differential forms) that
every 4-vector potential satisfying (35) can be written in the form (34), so this representation
is quite general. (We can even dispense with the Lorenz condition by performing a gauge
transformation on Aµ. See [N55] for an excellent and thorough account of Hertz potentials
and their enormous gauge group.) The real vector fields P e and P m defined by

P = P e + iP m = � Z = (� 
)π = Sπ (36)

are the electric and magnetic polarization densities. They are distributions supported spatially
on the branch cut B. Since we are in Lorenz gauge, the charge-current density is Jµ = � Aµ,
hence

J0 = −∇ · P e J = ∂tP e + ∇ × P m (37)

with charge conservation guaranteed by the Lorenz condition. The polarization densities thus
act as ‘potentials’ for the charge-current density, a property inherited directly from (34).

The reason why Hertz potentials will be so useful can be seen by computing the fields:

B = ∇ × A = ∇ × ∇ × Zm + ∂t∇ × Ze (38)

and

E = −∇A0 − ∂tA = ∇∇ · Ze − ∂2
t Ze − ∂t∇ × Zm

= −� Ze + ∇ × ∇ × Ze − ∂t∇ × Zm. (39)

Taking into account (36) gives

D = E + P e = ∇ × ∇ × Ze − ∂t∇ × Zm (40)

which is a kind of ‘harmonic conjugate’ of (38), so the real fields D,B can be expressed
compactly in the complex form [S41, pp 32–34]

F ≡ D + iB = ∇ × ∇ × Z + i∂tZ. (41)

Note that outside the branch cut B,P e = 0 and D = E. The Hertz formalism thus
automatically takes account of the polarization, so that the expression (40), if interpreted
as a distribution, is valid even within a singular source region.
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Again I emphasize that F = D + iB is ‘real’ in the sense that D and B are real, physical
fields. Yet F , like 
, is analytic in the source-free complex spacetime region

TB = {(r − ia, t − ib) ∈ C
4 : |b| > a, r /∈ B}. (42)

More simply, because of their spheroidal symmetry, 
 and F are analytic functions of the two
complex variables (σ, τ ) in the region

UB = {(σ, τ ) ∈ C
2 : |b| > a, p �= χB(q)} (43)

where χB(q) is the cut function for B. Thus D and B are really harmonic conjugates
as suggested earlier. On the other hand, P and Jµ characterize the singularities spoiling
analyticity in the source region, including the branch points and branch cuts. This differs
from the usual practice in the frequency domain, where (D,B) are the real parts of separate
complex fields (Dc,Bc), and it might appear that these two representations are in conflict
since the real fields cannot be extracted by taking the real and imaginary parts of Dc + iBc.
To clarify this, consider the frequency components of F ,

F ω =
∫ ∞

−∞
dt eiωtF = Dω + iBω

and note that since F is complex, its positive- and negative-frequency components are
independent. Therefore a general monochromatic field consists of two terms,

Gmono = e−iωtF ω + eiωtF −ω ω > 0

= e−iωt (Dω + iBω) + eiωt (D−ω + iB−ω)

= e−iωt (Dω + iBω) + eiωt (D∗
ω + iB∗

ω)

where the reality conditions have been used on Dω and Bω. The representation of a
monochromatic field is therefore no different from that of a general field:

Gmono = Dmono + iBmono

with both fields real:

Dmono(t) = 2 Re{e−iωtDω} Bmono(t) = 2 Re{e−iωtBω}.
Recall that for b > a and b < −a, the analytic signal g(τ) contains only positive- and
negative-frequency components. Therefore

b > a ⇒ Dω + iBω = 0 ∀ω < 0 b < −a ⇒ Dω + iBω = 0 ∀ω > 0.

This shows that the monochromatic components of the electromagnetic wavelets satisfy

Bmono(t) = 2 Re{ie−iωtDω} = Dmono(t − π/2ω),

so B trails D if b > a, and it leads D if b < −a. (Recall also that the pulse travels along
±a if ±b > a.) More generally, the wavelets are helicity eigenstates with helicity 1 if b > a

and −1 if b < −a. This concept applies not only the time-harmonic components but also
to general time domain fields [K3a]. As already mentioned, using the analytic combinations
of fields also has the great advantage of compactness and simplicity over the alternative of
disentangling the real and imaginary parts.

Before launching into the field computations, I want to prepare the way for computing
equivalent currents on the spheroid Sα in the coming section. Let us construct this spheroid
from the two branch cuts B±α given in (15) and (16). Let us now denote by σ the complex
distance with the disc S0 as branch cut. This will be used as a reference for defining the
complex distance functions with B±α as cuts, which we denote by σ±. Let V± be the volumes
bounded by S±

α together with S0, so that

∂V+ = S+
α − S0 ∂V− = S0 − S−

α
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Figure 3. Values of the branches σ± of the complex distance function determined by the branch
cuts B±α , given in terms of the branch σ determined by the disc S0.

where the signs are related to the orientations of S±
α and S0 by a. The union and compliments

of V± will be denoted by

V = V+ ∪ V− V ′
± = R

3 − V± V ′ = R
3 − V.

Now recall the rule for crossing a branch cut other than the reference cut S0: σB changes sign.
Thus, denoting the complex distance functions with respect to B±α by σ±, we have

σ± =
{
σ in V ′

±
−σ in V±

(44)

as shown in figure 3.
The field radiated jointly by the two branch cuts B±α is therefore

F α(σ, τ ) =



2F (σ, τ ) in V ′

F (−σ, τ) + F (σ, τ ) in V+

F (σ, τ ) + F (−σ, τ) in V−.

Observe that there is no field discontinuity in going from V+ to V−, hence

F α(σ, τ ) =
{

2F (σ, τ ) in V ′

F (−σ, τ) + F (σ, τ ) in V
(45)

as depicted in figure 4.
The transition σ → −σ across a branch cut turns retarded fields into advanced fields

since


(−σ, τ) = −g(τ + σ)

σ
. (46)

Although advanced fields are usually associated with acausal behaviour, there is a perfectly
causal explanation for (46). Consider the field radiated backward from Bα , as observed in
V+. Due to the curvature of the back side of Bα , this field converges towards the focal ring C
and, having passed though, it is no longer in V+ and therefore diverges normally. A similar
argument explains why the field emitted forward from B−α first converges towards C and
then diverges away from it. The usual acausal behaviour associated with advanced fields is
due to the assumption that they remain advanced for the indefinite future. (This argument
also applies to time-reversed acoustics [F0], where time reversal occurs only in a bounded
spacetime region.)
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Figure 4. Interior and exterior fields radiated by the oblate spheroid Sα , represented as a
combination of the two branch cuts B±α .

It was shown in [K3] that the sources of 
(σ, τ) and 
(−σ, τ) are equal and opposite;
that is they form a source-sink pair:

�
(−σ, τ) = −�
(σ, τ) = −S. (47)

The proof is trivial for real point sources, where

� g0(t ± r)

r
= −4πg0(t ± r)δ(r) = −4πg0(t)δ(r).

But it is more subtle for complex point sources because the extended delta function

δ̃(z) = −∇2 1

4πσ
z = r − ia

with a �= 0 fixed, is not supported at a single point but on the entire branch cut B and therefore

f (σ)δ̃(z) �= f (0)δ̃(z).

In fact, the left-hand side is not even defined since σ is discontinuous precisely on the disc
supporting δ̃(z); therefore, some care must be used in proving (47).

Equation (47) shows that the interior superpotential 
(σ, τ) + 
(−σ, τ) is sourceless,
as are the Hertz potentials and electromagnetic fields derived from it. The interior field is

F 0(σ, τ ) = F (σ, τ ) + F (−σ, τ). (48)

Let us first compute the exterior field F , which will give the interior field by symmetrizing
with respect to σ . Let


 ′ ≡ ∂σ
 = − ġr

σ
− gr

σ 2
ġr = ∂tgr(τ − σ)


 ′′ = ∂σ
 ′ = g̈r

σ
+

2ġr

σ 2
+

2gr

σ 3
= g̈r − 2
 ′

σ

u = ∇σ = ∇p − i∇q = z

σ

and note that u is a complex unit vector:

u · u = z ·z

σ 2
= 1.
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Thus

∇ × Z = ∇
 × π = 
 ′u × π

∇ × ∇ × Z = 
 ′′u × (u × π) + 
 ′∇ × (u × π)

and by a simple computation,

u × (u × π) = λu − π λ = u · π

∇ × (u × π) = −λu + π

σ
.

Therefore (41) gives

F = 
 ′′(λu − π) − 
 ′

σ
(λu + π) + i
̇ ′u × π

or

F =
(

g̈r

σ
+

3ġr

σ 2
+

3gr

σ 3

)
λu −

(
g̈r

σ
+

ġr

σ 2
+

gr

σ 3

)
π − i

(
g̈r

σ
+

3ġr

σ 2

)
u × π. (49)

This expression will be written compactly as

F = Lλu − Mπ − iNu × π (50)

where

L = g̈r

σ
+

3ġr

σ 2
+

3gr

σ 3
M = g̈r

σ
+

ġr

σ 2
+

gr

σ 3
N = g̈r

σ
+

ġr

σ 2
. (51)

We now examine the far field to see under what conditions the polarization vector π gives the
strongest beams. In the far zone (9) we have

r � a ⇒ σ ≈ r − ia cos θ u ≈ er .

Therefore

F far = g̈(τ − σ)

r
(λer − π − ier × π)

= − g̈(τ − σ)

r
(π⊥ + ier × π⊥) (52)

where

π⊥ = π − (π ·er )er

is the component of π orthogonal to r which, as expected, is the only one that matters in the
far zone. Note that while we have replaced σ by r in the denominator of (52), the presence
of Im σ ≈ −r cos θ in g(τ − σ) plays an essential role in determining both the collimation of
the beam and the duration of the pulse, as already seen in (30) for g(τ) = Cn(τ).

The far field satisfies the helicity condition

ier × F far = F far (53)

or equivalently

Bfar = er × Dfar Dfar = −er × Bfar.

As we are interested mainly in the paraxial region of the far zone, the most efficient choice of
π is orthogonal to a. Since

r = ρ + zâ ⇒ u = r − ia

σ
= ρ

σ
+

z − ia

σ
â

this implies

λ = u · π = ρ · π

σ
.

The far-zone energy density is

Efar = 1
2 {|Dfar|2 + |Bfar|2} = 1

2 |F far|2
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and, by (53), the far-zone Poynting vector is

Sfar = Efar × H far = Dfar × Bfar = 1

2i
F ∗

far × F far

= 1

2
F ∗

far × (er × F far) = 1

2
|F far|2er = Efarer

since F far is orthogonal to er .

4. Equivalent currents

In principle, the scalar source generates the charge-current density by (36) and (37). But this
would involve not only the messy disentangling of the real and imaginary parts of P = Sπ
(with both factors complex), but also dealing with the singular nature of S. While S is well
defined mathematically as a distribution [K3], it seems to be of little direct value from a practical
point of view. Since S is supported on the branch cutB, one expects the electromagnetic sources
to consist of a surface charge density j0 and a surface current density j. But it turns out that
these surface sources are singular on the branch circle C, where σ = 0. The essence of the
problem can be understood from a careful analysis, given in [K1a], of a much simpler case,
which we now recall.

Example. The analytically continued Coulomb field due to point charge of strength Q = 1 is

C(r − ia) = −∇ 1

4πσ
= r − ia

4πσ 3
. (54)

Newman [N73] has shown that this can be identified with a real electromagnetic field (D,B)

by

C = D + iB (55)

interpreted as the flat-spacetime (zero-mass) limit of the Maxwell field in the Kerr–Newman
solution in general relativity [N65], which represents a spinning black hole of unit charge3.
It is instructive to compute the surface sources on a branch cut, which for simplicity we now
take to be the disc S0 defined in (6). On the upper and lower faces of S0, we have

p → +0 z → ±0 σ → ∓i
√

a2 − ρ2

hence

C → ∓ iρ

4π(a2 − ρ2)3/2
∓ a

4π(a2 − ρ2)3/2
.

The jumps in D and B across the cut are therefore

δD = − a

2π(a2 − ρ2)3/2
δB = − 2ρ

2π(a2 − ρ2)3/2
.

Since δD is orthogonal and δB is tangent to S0, it follows that the magnetic surface
charge- and current-densities vanish as required. The electric surface densities are given by
[J99, p 18]

j0 = −â · δD = − a

2π(a2 − ρ2)3/2

j = â × δB = − câ × ρ

2π(a2 − ρ2)3/2
= − cρeφ

2π(a2 − ρ2)3/2

(56)

3 When D in (55) is reinterpreted as a Newtonian force field, then B is a gravitomagnetic field related to the ‘dragging’
of Einsteinian spacetime in the vicinity of a spinning body. Evidently, this effect survives the flat-spacetime limit as
the conjugate-harmonic partner to the Newtonian gravitation.
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where we have inserted the speed of light (taken earlier to be c = 1) for dimensional reasons.
Before discussing the problem with (56), note that if we define the local charge velocity by

v ≡ j

σ
= cρ

a
eφ (57)

its linearity in ρ suggests a ‘hydrodynamic’ interpretation of S0 as a rigidly spinning charged
disc with angular velocity

� = c/a. (58)

In particular, the rim C is moving at the speed of light. While this conclusion seems bizarre in
ordinary electrodynamics, it is entirely consistent with the origin of the field C as the residual
Maxwell field of a charged, spinning black hole. The investigation in [K1a] has sparked
a renewed interest in Newman’s original paper [N73], leading to similar interpretations
of linearized gravitational fields [N2] and a generalized Lienard–Wiechert field where the
radiating point source moves along an arbitrary trajectory in complex spacetime [N4]. Our
antennas will be similar, but their source is a dipole following a complex trajectory and not a
monopole, and so their charge-current densities are generated by polarizations.

We now come to the main lesson taught by this example. C is an analytic continuation
of the Coulomb field of a point source with charge Q = 1. If the continuation is to make
physical sense, the total charge should remain unchanged. This is contradicted by j0, which
is not only strictly negative but whose total charge on S0 is −∞! To resolve this difficulty,
it is necessary to treat the charge-current density as a singular volume distribution, just as the
scalar source S = � 
 was treated in [K3]. The inhomogeneous Maxwell equations now
state that the (volume) charge- and current-density are

J0 = ∇ · F J = −∂tF − i∇ × F (59)

while the homogeneous Maxwell equations require that J0 and J be real. Taken as definitions
of the sources in the sense of generalized functions, it was shown in [K3a] that (59) indeed
give a sensible answer. The equivalent surface sources on any spheroid Sα with α > 0 are
defined by

j0 = ep · δF j = −iep × δF (60)

where the outgoing unit normal ep on Sα is computed in the appendix. These sources are
found to be complex, which means that they include a magnetic charge-current density; the
latter vanishes in the limit α → 0, in agreement with the above conclusion. The advantage
of using α > 0 is that the sources are smooth and bounded, with a total charge Q = 1 as
required. As α → 0, they decompose into surface sources on the interior of the disc which
coincide with (56), plus line sources on the rim C. The line sources carry a total charge of ∞,
but when the entire source distribution is treated as a generalized function, it carries the correct
total charge Q = 1. The problem with (56) is that the jump conditions (using infinitesimal
pillboxes and loops) can be applied only on the interior of the disc and not on its boundary
C. A similar argument applies to every branch cut, showing that caution must be exercised in
computing equivalent sources, a lesson we will recall when computing the currents required
to produce electromagnetic wavelets.

Finally, we turn to computing the equivalent sources for F on the spheroid Sα . Some
important properties of equivalent real scalar surface sources were analysed in [HLK0], but
their connection to the vector case and, specifically, to our topological use of branch cuts,
remains to be explored.

According to (45) and (48), the jump in the field across the spheroid is

δF (σ, τ ) = F (σ, τ ) − F (−σ, τ) (61)



Making electromagnetic wavelets 5943

where the complex distance σ with respect to S0 is continuous across Sα . Unlike the sum (48)
of retarded and advanced fields, the difference (61) does have sources and they are confined to
the surface Sα , which we shall presently compute. Begin by writing (50) in the more explicit
form

F (σ, τ ) = L(σ, τ)λu − M(σ, τ)π − iN(σ, τ)u × π (62)

with L,M,N given in terms of the retarded signal gr(σ, τ ) = g(τ − σ) by

L(σ, τ) = g̈r

σ
+

3ġr

σ 2
+

3gr

σ 3
M(σ, τ) = g̈r

σ
+

ġr

σ 2
+

gr

σ 3
N(σ, τ) = g̈r

σ
+

ġr

σ 2
.

Define the mixed signals g± by

g±(σ, τ ) = g(τ − σ) ± g(τ + σ)

and note that

σ → −σ ⇒ u = z

σ
→ −u λ = u · π → −λ.

Then we obtain the following expression for the field discontinuity:

δF = L̃(σ, τ )λu − M̃(σ, τ )π − iÑ(σ, τ )u × π (63)

where

L̃(σ, τ ) = g̈+

σ
+

3ġ−
σ 2

+
3g+

σ 3
M̃(σ, τ ) = g̈+

σ
+

ġ−
σ 2

+
g+

σ 3
Ñ(σ, τ ) = g̈−

σ
+

ġ+

σ 2
.

Before going on to compute the currents, note that (45) can be modified so that the interior
field is any source-free solution of Maxwell’s equations, i.e.,

F α =
{

2F (σ, τ ) in V ′

F int(r, t) in V

∇ · F int = 0 i∂tF int = ∇ × F int.

The choice of an interior solution other than F 0(σ, τ ) will, of course, modify the equivalent
sources on Sα . However, unless F int fits into the spheroidal geometry, the resulting sources
can be expected to be much more complicated and unnatural, and probably will not benefit
from the ‘magic’ of complex source points. Probably the most general class of interior fields
that do fit the geometry consists of arbitrary multiples of F 0, i.e.

F int(r, t) = νF 0(σ, τ ).

Then (61) is replaced by

δF (σ, τ ) = µF (σ, τ ) − νF (−σ, τ) µ + ν = 2 (64)

and all computations below easily generalize to this case. However, only when µ = ν = 1
can the radiating surface be interpreted as a combination of branch cuts! I believe that this
case is the most natural and expect it also to be the most useful. For this reason, only it will
be treated here, although our results easily extend to the case (64).

I now compute or estimate the various inner and outer products needed in (60). Free use
will be made of the results derived in the appendix, and there is no pretense of rigour. I will
assume that

0 < α � a

which means that the spheroid is rather flat. By (3) and (75),

ρ ≈
√

a2 − q2 z = αq |∇p| ≈ a

|σ | |∇q| ≈ ρ

|σ | .
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Thus

u = r − ia

σ
= ρ + (z − ia)â

σ
≈ ρ − ia

σ
. (65)

Recall that π is orthogonal to a, so that

π = πρeρ + πφeφ

and thus

λ = u · π = r · π

σ
= ρ · π

σ
= ρπρ

σ
.

From (76) in the appendix, the outgoing unit normal on Sα is

ep = ∇p

|∇p| = αr + qa√
α2 + q2

√
α2 + a2

≈ qâ√
α2 + q2

= q

|σ | â. (66)

The α2 term has been retained in the denominator to control the singularity at the equator.
(This is the main advantage of using Sα instead of S0.) The approximation (66) fails very near
the equator q = 0, where ep is far from parallel to a, but the analysis in [HLK0] suggests that,
for scalar wavelets at least, the immediate vicinity of q = 0 can be ignored. More precisely,
it was shown that for time-harmonic driving signals of frequency ω, the effective aperture,
emitting most of the radiation, consists of the front surface of the disc S0 parametrized by

k−1 � q � a i.e. ρ2 � a2 − 1/k2 k = ω/c. (67)

Of course, this has significance only if ka > 1. Lower frequencies generate mostly a reactive
field that swirls around the source region and is eventually reabsorbed4. Thus, to obtain a
high radiation efficiency, it is necessary to use signals g(τ) with little low-frequency content,
such as linear combinations of high-order derivatives of the Cauchy kernel (26). (Of course, a
careful repetition of the analysis needs to be made specifically for the electromagnetic case.)

The inner products needed to find j0 are

ep · u = ep · (∇p − i∇q) = |∇p| ≈ a

|σ |
ep · π ≈ q

|σ | â · π = 0

ep · (u × π) = π · (ep × u) = π · (ep × (∇p − i∇q))

= i|∇q|π · (eq × ep) = i|∇q|π · eφ ≈ iρ

|σ |πφ.

The outer products needed for j are

ep × u = i|∇q|eφ ≈ i
ρ

|σ |eφ

ep × π ≈ q

|σ | â × π ≈ iσ

|σ | (πρeφ − πφρ̂)

ep × (u × π) = (ep · π)u − (ep · u)π ≈ −(ep · u)π ≈ − a

|σ |π.

Using these in (60) gives the approximate surface charge density

σ |σ |j0 ≈ L̃aρπρ + Ñσρπφ (68)

4 This is consistent with the general fact that ‘DC components do not propagate’. It is also the basis of one of
the close connections between electromagnetic wavelets and mathematical wavelet theory, since it amounts to an
admissibility condition on electromagnetic wavelets [K94, p 214].
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and the approximate surface current density

σ |σ |j ≈ (L̃ρ2πρ − M̃σ 2πρ + Ñaρπφ)eφ + (M̃σ 2πφ + Ñaσπρ)eρ. (69)

As expected from our example of the analytic Coulomb potential, the equivalent sources on
a spheroid are complex, indicating the presence of unrealizable magnetic charges. Since the
magnetic sources in that example vanished as α → 0, it is reasonable to hope that this will
also be the case here. As the spheroid Sα with 0 < α � a is very flat, it may be possible
to choose the phase of the polarization vector π (representing the mixture of electric and
magnetic dipoles) so as to minimize the magnetic sources over Sα excluding the vicinity of
the rim C, and the latter region can be ignored for highly oscillatory driving signals as shown
in [HLK0]. This question will be addressed in detail elsewhere.

Finally, we compute the impulse response of the antenna, i.e. the sources jµ when the
driving signal is the impulse

g0(t) = δ(t) ⇒ g(τ) = 1

2iπτ
= C1(τ ).

Note that the real point source version of the scalar wavelet (18) is then the retarded propagator
for the wave equation,


 → 
0(r, t) = δ(t − r)

r
�
0 = 4πδ(r, t) (70)

where the precise relation between 
 and 
0 is given in terms of complex-distance potential
theory in [K3]. The mixed signals are

g+ = 1

2iπ(τ − σ)
+

1

2iπ(τ + σ)
= τ

iπu
where u = τ 2 − σ 2

g− = 1

2iπ(τ − σ)
− 1

2iπ(τ + σ)
= σ

iπu

and their time derivatives are

ġ+ = −τ 2 + σ 2

iπu2
g̈+ = 2τ 3 + 6τσ 2

iπu3

ġ− = − 2στ

iπu2
g̈− = 6τ 2σ + 2σ 3

iπu3
.

This gives

L̃ = 15σ 4τ − 10σ 2τ 3 + 3τ 5

iπσ 3u3
M̃ = 9σ 4τ − 2σ 2τ 3 + τ 5

iπσ 3u3
Ñ = 3σ 4 + 6σ 2τ 2 − τ 4

iπσ 2u3
,

which can be substituted into (68) and (69) to obtain the impulse response.
In view of the discussion following (67), we are actually more interested in the system’s

response to the bandbass signal in (26),

Cn(τ) = (i∂t )
n−1C1(τ ) = (n − 1)!

2π inτ n
= (−∂b)

n−1C1(τ ).

The induced surface source j (n)
µ can be computed directly from the impulse response:

j (n)
µ = (−∂b)

n−1jµ. (71)
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5. Concluding note

Source-free relativistic fields always extend analytically to the double tube domain T± (21) of
complex spacetime, as explained in [K3]. I find it quite remarkable that the extension 
(σ, τ)

of the propagator (70) generates fields with spatially compact sources that are analytic in the
source-free parts TB of complex spacetime obtained by removing the world tubes swept out
by the sources. The boundary values of these analytic fields then characterize the singular
sources, as shown above.
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Appendix

The complex unit vector u is given by

u = ∇σ = z

σ
= ∇p − i∇q (72)

hence

∇p = pr + qa

p2 + q2
∇q = pa − qr

p2 + q2
. (73)

Note that

u · u = 1 ⇒ |∇p|2 − |∇q|2 = 1 ∇p · ∇q = 0 (74)

and

|∇p|2 + |∇q|2 = u∗ · u = r2 + a2

p2 + q2
= p2 − q2 + 2a2

p + 2 + q2

which gives

|∇p|2 = p2 + a2

p2 + q2
|∇q|2 = a2 − q2

p2 + q2
. (75)

The unit vectors in the directions of increasing p and q are therefore

ep = pr + qa√
p2 + q2

√
p2 + a2

eq = pa − qr√
p2 + q2

√
a2 − q2

. (76)
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Abstract
In the companion paper, a charge–current distribution was obtained for radiating
electromagnetic wavelets. However, it cannot be realized because of two
drawbacks: (a) it requires the existence of magnetic charges, and (b) the charge–
current distribution, which is concentrated on a spheroidal surface Sα , is too
singular for practical implementation. Both of these difficulties are resolved
here. The first is resolved by using Hertz vectors to generate a charge–current
distribution on Sα due solely to bound electric charges. The second is resolved
by replacing Sα with a spheroidal shell of finite thickness. This generalizes the
usual boundary conditions on an interface between electromagnetic media by
allowing the transition to be gradual.

PACS numbers: 02.30.Jr, 02.30.Uu, 41.20.Jb, 41.85.Ct

(Some figures in this article are in colour only in the electronic version)

1. Introduction

This paper is aimed at physicists and mathematical physicists interested in classical
electrodynamics and optics. In the companion paper [K4], a coherent charge–current
distribution for radiating electromagnetic wavelets was constructed on an oblate spheroidal
surface Sα . Its main drawback was the necessity of including magnetic along with electric
charges, making the sources impossible to realize. Here we show how this difficulty can be
overcome by using Hertz vectors [BW99, J99] to generate a charge–current distribution on
Sα due solely to bound electric charges. However, this distribution is still too singular to
realize. We show how it can be replaced by a simple volume distribution on a spheroidal
shell containing Sα . Our method generalizes the usual boundary conditions on an interface
between electromagnetic media by allowing the transition to occur gradually, without incurring
additional complexity.
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We rely on the concepts in [K4], with some improvements in the notation. For further
background on physical wavelets and complex-source pulsed beams, see [K94, HLK0, HF1].
The complex distance from the imaginary source point ia to the real observation point r will
be denoted by

r̃ =
√

(r − ia) · (r − ia) = p − iq (1)

and the complex time by

t̃ = t − ib. (2)

The imaginary time b plays the role of an overall scale parameter, similar to the scale of
ordinary wavelets in one dimension, determining the duration of the pulsed-beam wavelets.
The imaginary space vector a similarly controls the spatial extent and orientation of the
wavelets. The real and imaginary parts of r̃ satisfy the inequalities

|p| � r, |q| � a where r = |r|, a = |a|. (3)

For fixed a �= 0, the branch points of r̃ in R
3 form the circle

C = {r : r̃ = 0} = {r : a · r = 0, r = a}
and the ‘standard’ branch of r̃ , defined by p � 0, has for its branch cut the disc

D = {r : p = 0} = {r : a · r = 0, r � a}.
Here r̃ is real-analytic in R

3 except for a jump discontinuity due to a sign reversal upon
crossing D. Every other branch satisfying the positivity condition

a → 0 ⇒ r̃ → r � 0

can be obtained by continuously deforming D to a membrane B with the same boundary,

∂B = ∂D = C.

The associated branch of r̃ is defined by

r̃B = pB − iqB =
{
r̃ , r /∈ VB
r̃ , r ∈ VB

(4)

where VB is the compact volume swept out by deforming D to B. It follows [K4a] that r̃B is
real-analytic in R

3 except for a sign reversal across B.
The scalar wavelet1 with branch cut B is defined by

�B = g̃(t̃ − r̃B)

r̃B
,

where g̃ is the ànalytic signal’ associated with a driving signal g(t) exciting the source by

g̃(t̃) = 1

2π i

∫ ∞

−∞

g(t ′) dt ′

t̃ − t ′
, (5)

which is indeed analytic in the complement of the support of g:

∂g̃(t̃)

∂ t̃∗
= 1

2
(∂t − i∂b)g̃(t − ib) = 0 ∀t̃ /∈ supp g ⊂ R. (6)

The significance of the extension parameter b can be understood by noting that the real and
imaginary parts of g̃ are

gb(t) = b

2π

∫ ∞

−∞

g(t ′) dt ′

(t − t ′)2 + b2
, ĝb(t) = 1

2π

∫ ∞

−∞

(t ′ − t)g(t ′) dt ′

(t − t ′)2 + b2
. (7)

1 Strictly speaking, the term ‘wavelet’ should be reserved for certain choices of g, as explained in [K4]. The scalar
wavelet of order n is obtained with g̃ as the nth derivative of the Cauchy kernel C(t̃) = 1/2π it̃ . Also, note that we
use units in which the propagation speed is c = 1.
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Figure 1. (p, q, φ) form an oblate spheroidal coordinate system.

Here gb is a smoothed version of g with b as the scale or resolution parameter, while ĝb is a
smoothed version of the Hilbert transform of g, again with b as the scale parameter. Thus,
time variations of order less than |b| are suppressed in g̃(t − ib).

Due to its denominator, �B is singular on C, where r̃B = 0, and discontinuous in the
interior of B, where r̃B reverses sign. To avoid any further singularities, we want to ensure
that the numerator g̃(t̃ − r̃B) is analytic in all of R

3, and for this it suffices to have its argument
bounded away from the real axis by a positive distance. Since

t̃ − r̃B = t − pB − i(b − qB) (8)

and |qB| = |q| � a, a necessary and sufficient condition is

a < |b|. (9)

This states that the imaginary spacetime four-vector (a, b) is time-like, belonging to the future
cone of spacetime if a < b and the past cone if b < −a. The condition (9) will be assumed
from now on, making �B real-analytic in R

3 − B.
The source �B of �B is defined by applying the wave operator:

4π�B = ��B where � = ∂2
t − �. (10)

�B can be easily shown to vanish wherever �B is twice differentiable, hence

r /∈ B ⇒ �B = 0. (11)

To characterize the source on B, we must apply � in a distributional sense [GS64]. Just as
differentiating the Heaviside function gives the delta-function, differentiating a discontinuous
function like �B in a distributional sense gives a single layer on the surface of discontinuity,
represented by a delta-function of a variable normal to that surface. Since �B is obtained by
differentiating �B twice, it will consist of a combination of single and double layers on B
[K4, K4a]. Moreover, these layers diverge on the boundary C = ∂B since �B is singular there.
This singularity will be tamed below by combining wavelets with different branch cuts.

The variables (p, q) defined by (1), together with the azimuthal angle φ about the
a-axis, determine an oblate spheroidal coordinate system where the level surfaces of p are the
spheroids

Sp :
x2 + y2

p2 + a2
+

z2

p2
= 1, p �= 0 (12)

and the level surfaces of q are the orthogonal hyperboloids Hq . All these quadrics are confocal,
having the circle C as their common focal set. This is depicted in figure 1. As p → 0,Sp

shrinks to a double cover of the disc D.
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Figure 2. The upper hemispheroidal branch cut B+
α with its apron Aα .

When the source of �B is computed, it will be singular on C due to the singularity of
�B there. In the case of a real point source, this corresponds to the singularity of δ(r) at
r = 0. Recall that the latter can be regularized by replacing the origin with a sphere of small
radius r = α, whence δ(r) is replaced by a uniform distribution on the spherical surface. The
delta-function can then be defined in terms of the limit α → 0. The equivalent procedure now
is to replace the sphere by the oblate spheroid Sα , which is defined by p = Re r̃ = α > 0. But
we can go a step further and represent Sα as a sum of two branch cuts, something that cannot
be done for a real point source since the deformation of a point is still a point. Thus, consider
the branch cut

B+
α = S+

α ∪ Aα (13)

consisting of union of the upper hemispheroid

S+
α = {r ∈ Sα : z > 0}

and the apron

Aα = {r : r · a = 0, a2 � r2 � a2 + α2}
connecting S+

ε to the branch circle C, as shown in figure 2. (The apron must be included so
that ∂B+

α = C as required.)
Similarly, let

B−
α = S−

α ∪ Aα (14)

be the union of the lower hemispheroid

S−
α = {r ∈ Sα : z < 0}

with Aα . For simplicity, denote the complex distance with branch cut B±
α by r̃± instead of

r̃B±
α

and the corresponding wavelet by �±. Let V ±
α be the interiors of the upper and lower

hemispheroids and Vα be the interior of Sα . According to (4),

r ∈ V +
α ⇒ �+(r̃, t̃ ) = �(−r̃ , t̃ ), �−(r̃, t̃ ) = �(r̃, t̃)

r ∈ V −
α ⇒ �+(r̃, t̃ ) = �(r̃, t̃), �−(r̃, t̃ ) = �(−r̃ , t̃ )

r /∈ Vα ⇒ �+(r̃, t̃ ) = �−(r̃, t̃ ) = �(r̃, t̃).

Consider the average of �±,

�A(r̃, t̃) = 1
2 {�−(r̃, t̃ ) + �+(r̃, t̃ )}. (15)
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Then by the above,

�A(r̃, t̃) =
{

�1(r̃, t̃ ), r ∈ Vα

�2(r̃, t̃ ), r /∈ Vα

(16)

where the internal field �1 and the external field �2 are

�1(r̃, t̃ ) = 1
2 {�(r̃, t̃) + �(−r̃ , t̃ )}, �2(r̃, t̃ ) = �(r̃, t̃) (17)

and will, for later purposes, be regarded as functions on all of R
3. It follows directly from the

definition (5) of g̃ that

�1(r̃, t̃ ) = 1

4π ir̃

∫ ∞

−∞
g(t ′) dt ′

{
1

t̃ − t ′ − r̃
− 1

t̃ − t ′ + r̃

}

= 1

2π i

∫ ∞

−∞

g(t ′) dt ′

(t̃ − t ′)2 − r̃2
,

(18)

which depends only on r̃2 and is therefore independent of the choice of branch cut.
Furthermore, since (9) ensures that

|t̃ − t ′ ± r̃| � |Im(t̃ − t ′ ± r̃)| = |b ± q| � |b| − a > 0,

we have

|(t̃ − t ′)2 − r̃2| > (|b| − a)2 > 0 ∀r.

This shows that �1 is real-analytic in R
3, at least if g has compact support or decays sufficiently

rapidly to ensure that the integral (18) converges. That is, by taking the average (17) we have
managed to cancel the singularities of �(±r̃ , t̃ ) on C as well as their jump discontinuities
across D, leaving a field which is analytic in all of R

3 and hence sourceless:

��1(r̃, t̃ ) = 0 ∀(r, t) ∈ R
4.

The only region where �A fails to be analytic is therefore Sα , where it is discontinuous by
(16). But even there, the irregularity is mild in the sense that the jump discontinuity

�J (r̃, t̃ ) ≡ �2(r̃, t̃ ) − �1(r̃, t̃ ) = 1
2 {�(r̃, t̃) − �(−r̃ , t̃ )} (19)

is bounded—unlike that in any single branch �B, which is singular on C. Like �1 and �2, �J

will be regarded as a field on all of R
3, although for the present we need it only on Sα . The

source �A of �A, defined by

4π�A = ��A, (20)

is therefore a distribution supported on Sα . By the argument below (10), it consists of a
combination of single and double layers on Sα , with the difference that these layers are now
bounded since Sα avoids the singular circle C. Even so, it is not clear that the double layer
can be realized in practice. In the next section we replace �A by a continuous field, where the
transition from �1 to �2 occurs gradually over a range of spheroids, whose source is supported
on a spheroidal shell instead of a single spheroid. (This explains the reason for viewing �1, �2

and �J as fields on all of R
3.) Such volume sources, and their electromagnetic counterparts

considered in the following section, should be realizable.
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2. Spheroidal shell sources

Let H be the Heaviside step function. Since 0 � p < α in the interior of Sα and p > α in the
exterior, we have

�A = H(α − p)�1 + H(p − α)�2. (21)

It is natural to use the vector field orthogonal to Sp given by [K3, appendix]

n ≡ ∇p = pr + qa

p2 + q2
, (22)

which is unnormalized with

n2 ≡ |n|2 = p2 + a2

p2 + q2
� 1, n · ∇q = 0, ∇ · n = 2p

p2 + q2
. (23)

We can compute the source �A in (20) by using

∇H(p − α) = −∇H(α − p) = H ′(p − α)n = δ(p − α)n. (24)

Applying the wave operator gives �A as a combination of terms involving δ(p − α), interpreted
as single layers on Sα , and δ′(p − α), interpreted as double layers. As mentioned above, it is
doubtful whether the double layer can be realized in practice, and this will get still worse in the
electromagnetic case, where the currents involve one more derivative. Since we are interested
in physically realizable sources, we now proceed to modify the above construction. The terms
involving δ(p − α) and δ′(p − α) are unavoidable as long as the source is confined to the
surface Sα . To construct more realistic sources, we now choose a function h that approximates
the Heaviside function. A convenient example is

h(p) = 1

π
arg(−p + iε) = 1

π
ImLog(−p + iε), ε > 0 (25)

which becomes the Heaviside function in the limit as ε → 0. Note that

h′(p) = ε

π(p2 + ε2)
(26)

is indeed an approximation to the delta-function. But the simple choice (25) has the drawback
that h′ is not compactly supported, so the resulting source, although extremely small outside a
shell of thickness O(ε), will not have strictly compact spatial support. To obtain a compactly
supported source, we now assume that h has the following properties,

h(p) + h(−p) = 1 and h(p) =
{

0, p � −ε

1, p � ε
(27)

where ε will be assumed fixed with

0 < ε < α, (28)

so that h(p − α) vanishes on the disc D where p = 0. Define the regularized version of �A

by replacing H by h in (21),

�ε
A = h(α − p)�1(r̃, t̃ ) + h(p − α)�2(r̃, t̃ ). (29)

To simplify the equations, we use the abbreviations

h1(p) = h(α − p), h2(p) = h(p − α), (30)

so that

�ε
A = h1�1 + h2�2 ≡ hk�k (31)
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where the Einstein convention of summing over repeated indices has been used. The source
�ε

A of �ε
A is defined as usual by

4π�ε
A ≡ ��ε

A. (32)

To compute this, note that since (27) implies h′(−p) = h′(p),

∇�ε
A = −h′(α − p)�1n + h′(p − α)�2n + hk∇�k

= h′(p − α)�J n + hk∇�k

(33)

where �J , defined as in (19) and given by

�J (r̃, t̃ ) = 1

4π ir̃

∫ ∞

−∞
g(t ′) dt ′

{
1

t̃ − t ′ − r̃
+

1

t̃ − t ′ + r̃

}

= 1

2π ir̃

∫ ∞

−∞

(t̃ − t ′)g(t ′) dt ′

(t̃ − t ′)2 − r̃2
,

(34)

no longer represents a jump discontinuity of the field since we are not confined to a single
spheroid. By the same argument used to show that �1 is real-analytic in R

3, it follows that �J

is real-analytic in R
3 except for being discontinuous on D and singular on C due to the factor

1/r̃ . Taking the divergence of (33) gives

��ε
A = h′′(p − α)�J n2 + 2h′(p − α)∇�J · n + h′(p − α)�J ∇ · n + hk∇�k.

Since �J (r̃, t̃) is complex-analytic in r̃ when r /∈ D,

p > 0 ⇒ ∇�J = �J ′∇ r̃

where the prime denotes the complex derivative with respect to r̃ ,

�J ′ = ∂�J

∂r̃
= 1

2
(∂p + i∂q)�J = 1

2
{� ′(r̃, t̃ ) + � ′(−r̃ , t̃ )}. (35)

By (23),

∇ r̃ · n = (∇p − i∇q) · n = n2.

Subtracting ∂2
t �ε

A thus gives

−4π�ε
A = h′′(p − α)�J n2 + 2h′(p − α)�J ′n2 + h′(p − α)�J ∇n − hk��k.

But we have seen that ��1 vanishes identically and ��2 is supported on D, where h2 = 0 by
(27) and (28). Using (23) gives the regularized source

−4π�ε
A = h′′(p − α)�J n2 +

2h′(p − α)

p2 + q2
{(p2 + a2)�J ′ + p�J } (36)

supported on the spheroidal shell

Sε
α = {r : α − ε � p � α + ε}. (37)

We emphasize that �ε
A is a smooth volume source that depends only on the ‘jump field’

�J . Taking the limit ε → 0 so that h becomes the Heaviside function gives the source �A

consisting of single and double layers on Sα .
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3. Maxwell’s equations and Hertz potentials

We work with the following complex combinations of electromagnetic fields:

F = D + iB (38)

G = E + iH = F − 4πP (39)

P = Pe + iPm (40)

where the units are Gaussian with c = 1, Pe is the electric dipole density, and Pm is the
magnetic dipole density. Maxwell’s equations take the form

∇ · F = 4πρ Ḟ + i∇ × G = −4πJ (41)

where Ḟ = ∂tF . In the general case of complex charge and current densities

ρ = ρe + iρm J = Je + iJm,

equations (41) are equivalent to

∇ · D = 4πρe Ḋ − ∇ × H = −4πJe

∇ · B = 4πρm Ḃ + ∇ × E = −4πJm,
(42)

so the imaginary parts (ρm, Jm) represent the magnetic charge–current density. Since magnetic
monopoles are not observed, we must require

ρm = 0 and Jm = 0. (43)

That is, equation (41) are completely equivalent to the usual Maxwell equations if we add
the requirement that (ρ, J) is real. We will consider solutions derived from a complex Hertz
potential consisting of electric and magnetic Hertz vectors [BW99, J99]

Z = Ze + iZm (44)

whose source is the polarization,

�Z = 4πP . (45)

(For this reason, (Ze, Zm) are sometimes called polarization potentials.) The field F is then
given in terms of Z by

F = ∇ × ∇ × Z + i∇ × Ż, (46)

and it follows from (39) and (45) that

G = F − �Z = ∇ × ∇ × Z + i∇ × Ż + �Z − Z̈

= ∇∇ · Z + i∇ × Ż − Z̈.
(47)

The real form of equations (45)–(47) is [BW99, pp 84, 85]

�Ze = 4πPe �Zm = 4πPm

E = ∇∇ · Ze − ∇ × Żm − Z̈e B = ∇ × ∇ × Zm + ∇ × Że

H = ∇∇ · Ze + ∇ × Że − Z̈m D = ∇ × ∇ × Ze − ∇ × Żm.

An inspection of the expressions for E and B reveals the meaning of the Hertz potentials as
‘superpotentials’ from which the four-vector potential (�, A) can be derived by

� = −∇ · Ze A = ∇ × Zm + Że. (48)

In fact, these automatically satisfy the Lorenz condition

�̇ + ∇ · A = 0,

gerry
Note
Z_m, not Z_e
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and every four-vector potential satisfying it can be derived from Hertz potentials. The freedom
to choose a gauge for (�, A), including a non-Lorenz gauge, is part of a much greater gauge
freedom in (Ze, Zm) [N55, BW99].

According to (46), F is a curl, so by (41) the free charge density vanishes:

ρ = 0. (49)

Furthermore, (47) gives

∇ × G = i∇ × ∇ × Ż − ∇ × Z̈ = iḞ ,

therefore by (41), the free current density also vanishes:

J = 0. (50)

Maxwell’s equations (42), written in terms of the microscopic fields (E, B), now state that

∇ · B = 0 ∇ × E + Ḃ = 0
∇ · E = 4πρb ∇ × B − Ė = 4πJb

(51)

where

ρb = −∇ · Pe Jb = Ṗe + ∇ × Pm (52)

represent the bound charge and current densities generated by the variable polarizations
(Pe, Pm). The fields derived from Hertz potentials as above are thus due entirely to bound
sources2.

4. Spheroidal electromagnetic antennas

In this section, we construct electromagnetic wavelets from scalar wavelets by turning � into
Z, then compute their charge–current densities. It is essential that the polarization P defined
in (45) have compact spatial support, as it cannot otherwise be realized. There are various
ways to turn a scalar solution of the wave equation into a vector solution without increasing
the support of its source distribution, the simplest being

Z = p� (53)

where p is a constant (possibly complex) vector. The polarization is then given by

4πP = p�� = 4πp�, (54)

so P and � have the same support. Since � is a distribution consisting of single and double
layers on D, so is P . A similar construction applies to the different versions supported on
the general branch cut B and the spheroid Sα . As explained below (24), the layers on B are
singular on C while those on Sα are bounded. Even so, the charge–current distributions (52)
require one further differentiation, hence they generate a still higher layer with coefficient
δ′′(p − α), and it is doubtful whether such distributions can be realized. For this reason,
we confine our analysis to volume sources on the spheroidal shell Sε

α (37). Define the Hertz
potential

Zε
A = p�ε

A (55)

with �ε
A as in (29), whose polarization density is

P ε
A = p�ε

A (56)

2 Free charge–current densities can be added by using stream potentials [N55].
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with �ε
A given by (36). If we interpret �ε

A as a scalar density, then (56) suggests an
interpretation of p as a (complex) combination of electric and magnetic dipole moments.
The charge and current densities on the shell, as given by (52), are

ρb = −Re
{∇ · P ε

A

} = − Re
{
p ·∇�ε

α

}
(57)

and

Jb = Re
{
Ṗ ε

A

}
+ Im

{∇ × P ε
A

} = Re
{
p�̇ε

A

} − Im
{
p × ∇�ε

A

}
. (58)

Outside the shell Sε
α the potential Zε

A coincides with Z = p�, whose pulsed-beam field F

was computed in [K4].

5. Extended Huygens sources

The above suggests an generalization of Huygens sources [Hy99], allowing equivalent sources
to be represented on shells instead of surfaces surrounding a bounded source. We present this
generalization and compare it to the usual method based on boundary conditions on an interface
between electromagnetic media. Let p(r, t) be a differentiable function, which will be called
a zone function. Fix two numbers p1 < p2 and consider the time-dependent surfaces and
volumes in R

3 defined by

S1(t) = {r : p(r, t) = p1}, S2(t) = {r : p(r, t) = p2}
V1(t) = {r : p(r, t) < p1}, V2(t) = {r : p(r, t) > p2}.

Given two electromagnetic fields (F1, G1) and (F2, G2), with or without sources, we want to
construct an interpolated field (F , G) so that

F (r, t) =
{
F1(r, t), r ∈ V1(t)

F2(r, t), r ∈ V2(t)

G(r, t) =
{
G1(r, t), r ∈ V1(t)

G2(r, t), r ∈ V2(t).

(59)

Choose a differentiable function h2(r, t) such that

h2(r, t) =
{

0, r ∈ V1(t)

1, r ∈ V2(t)
(60)

and let

h1(r, t) = 1 − h2(r, t).

We define the interpolated field as

F (r, t) = hk(r, t)Fk(r, t)

G(r, t) = hk(r, t)Gk(r, t)
(61)

where summations over k = 1, 2 are implied, and the jump field

FJ = F2 − F1 = DJ + iBJ

GJ = G2 − G1 = EJ + iHJ .
(62)

Then, according to (41), the charge density of (F , G) is

4πρ = ∇ · F = 4πhkρk + ∇h2 · FJ (63)

where

4πρk = ∇ · Fk, k = 1, 2 (64)
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are the charge densities of the prescribed fields. Thus, in addition to the interpolated charge
density

ρI = hkρk (65)

we have a transitional charge density given by

4πρT = ∇h2 · FJ (66)

which depends only on the component of the jump field FJ parallel to ∇h2. According to
(60), ρT vanishes outside the transition shell

VT (t) = {r : p1 � p(r, t) � p2}. (67)

Similarly, the current density is

4πJ = −Ḟ − i∇ × G = 4πhkJk − ḣ2FJ − i∇h2 × GJ (68)

where

4πJk = −Ḟk − i∇ × Gk, k = 1, 2

are the current densities of the prescribed fields. Hence J is the sum of the interpolated current
density

JI = hkJk (69)

and a transitional current density on VT (t) given by

4πJT = −ḣ2FJ − i∇h2 × GJ (70)

which depends only on FJ (if h2 is time dependent) and the component of GJ orthogonal to
∇h2. The electric and magnetic transitional sources are obtained by taking real and imaginary
parts. Assuming h2 is real, this gives

4πρe
T = ∇h2 · DJ 4πJ e

T = −ḣ2DJ + ∇h2 × HJ

4πρm
T = ∇h2 · BJ 4πJm

T = −ḣ2BJ − ∇h2 × EJ .
(71)

Letting h2 be complex in VT (t) makes the transition shell a chiral medium mixing electric
and magnetic fields. A further generalization is obtained by replacing hk with 3 × 3 matrices
(dyadics) Hk satisfying

H2(r, t) =
{

0, r ∈ V1(t)

I, r ∈ V2(t)
, H1(r, t) = I − H2(r, t) (72)

where I is the unit matrix. This makes the transition shell VT (t) a non-isotropic medium as
well as chiral if Hk are complex. See [LSTV94] for a treatment of chiral and non-isotropic
media.

Choosing the zone function p(r, t) time dependent thus gives a simple formulation of
the transition shell as a moving source, which could be useful in the analysis of radiation by
moving objects.

To see how all this relates to Huygens’ principle, suppose that we are only given a field
(F2, G2) whose charge–current density (ρ2, J2) is confined to V1(t), and we want to find an
equivalent charge–current density confined to VT (t) whose radiated field in V2(t) (but not
necessarily elsewhere) is (F2, G2). We are free to choose the field (F1, G1) in any way that
gives vanishing interpolated sources

ρI = hkρk = 0, JI = hkJk = 0, (73)

since the sources of the interpolated field are then purely transitional and hence confined to
VT (t) as desired. To satisfy (73), it suffices to require that (ρ1, J1) be confined to V2(t).
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Thus, choosing any field (F1, G1) with sources in V2(t) and any function h2 satisfying (60),
an equivalent charge–current density on VT (t) is given by (66) and (70). As p1 → p2, VT (t)

becomes S2 and (ρT , JT ) become ordinary Huygens surface sources [Hy99].
The freedom to choose (F1, G1) (interpreted as the ‘interior field’ if V1(t) is bounded) and

h2 is constrained by the requirement that the magnetic charge–current density must vanish, as
detailed below.

Now suppose that p = p(r) is time independent, so Sk and Vk are fixed, and choose hk

to be time independent and real. As p1 → p2, assume that

lim
p1→p2

∇h2(r) = δ(p(r) − p2)n(r)

where n(r) is a normal vector field on S2 pointing into V2. Then (66) and (70) give

ρT → δ(p(r) − p2)σ

JT → δ(p(r) − p2)K,
(74)

where

4πσ = n · FJ and 4πK = −in × GJ (75)

are the surface charge and current densities on S2, whose real and imaginary parts give the
electric and magnetic surface sources:

4πσe = n · DJ 4πKe = n × HJ

4πσm = n · BJ 4πKm = −n × EJ .
(76)

Since magnetic monopoles are not observed, σm and Km must vanish. When p1 < p2, this
may be accomplished if h2 can be chosen so that

∇h2 · BJ = 0, ∇h2 × EJ = 0, (77)

which is possible3 if

EJ · BJ = 0 ∀r ∈ VT (t). (78)

In the limit p1 → p2, (77) reduces (76) to

n · DJ = 4πσe n × HJ = 4πKe

n · BJ = 0 n × EJ = 0,
(79)

which are the usual boundary conditions on an interface between two media.
Returning to the general time-dependent setting, consider now an alternative procedure of

special interest here. Instead of interpolating two prescribed fields (Fk, Gk), let us interpolate
two Hertz potentials Zk:

Z = hkZk. (80)

As seen, this automatically results in vanishing ‘free’ sources ρ = 0, J = 0. The polarization
is found to be

4πP = �Z = 4πhkPk + 2ḣ2ŻJ − 2(∇h2 · ∇)ZJ − ZJ �h2

where 4πPk = �Zk are the polarizations of the prescribed fields. If

suppP1 ⊂ V2 and suppP2 ⊂ V1,

then the interpolated polarization hkPk vanishes and the polarization is purely transitional on
VT (t):

4πP = 2ḣ2ŻJ − 2(∇h2 · ∇)ZJ − ZJ �h2. (81)

This generalizes (56), and the bound charge–current densities derived from Pe and Pm via
(52) generalize (57) and (58).
3 Letting VT be a non-isotropic medium by using Hk (72) makes it easier to enforce the absence of magnetic
monopoles.
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6. Conclusions

We have improved on the computation of sources for electromagnetic wavelets given in [K4]
in two ways: (a) the spheroidal surface Sα supporting the sources has been replaced by a
spheroidal shell Sε

α supporting smooth volume sources. This eliminates the multiple layers on
Sα which make the sources difficult if not impossible to realize; (b) by deriving the sources from
Hertz potentials, we have eliminated the magnetic charge–current density, further facilitating
their realizability.

The problem with the magnetic sources in [K4] can be better understood from the current
perspective. Let the zone function be p = Re r̃ and Sk, Vk be as above with 0 < p1 < p2. Let
the fields (Fk, Gk) be derived from the Hertz potentials

Zk = p�k, k = 1, 2

with �k given by (17). Recall that �k are analytic in (r̃, t̃ ) for p > 0. Therefore the fields
(Fk, Gk) are analytic in (r̃, t̃ ) for r /∈ D, and

Pk = 0, Gk = Fk = Ek + iBk ∀r /∈ D.

The jump fields

FJ = GJ = EJ + iBJ

are also analytic, as is their polarization scalar [K3a]

F 2
J ≡ FJ · FJ = E2

J − B2
J + 2iEJ · BJ . (82)

The condition (78) thus requires the imaginary part of an analytic function to vanish for r ∈ VT ,
which implies that F 2

J vanishes identically. Although every electromagnetic field must have
F 2

J → 0 in the far zone [B15], fields satisfying F 2
J = 0 globally, called null fields, are rather

degenerate. In particular, the electromagnetic wavelet fields are not null and hence cannot
fulfil (78). Instead, we have begun with an interpolated Hertz potential (80) and derived bound
sources in the transition shell, thus preserving analyticity without invoking the existence of
magnetic monopoles.

There is still an unsatisfactory aspect to the polarization (56) and charge–current density
(57), (58). Namely, they depend on the fixed vector p and thus do not conform to the spheroidal
geometry. This suggests using methods of constructing Z from � other than (53). While
(53) is the complex version of Whittaker’s potentials [W4], there are alternatives which do not
require a fixed polarization vector, such as Debye potentials; see [BD98] for example. Such
alternatives will be considered in future work.
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fields.
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